Computer Memory History and Development Trend

Amir Mahdi Hosseini Monazzah

Room 332,

School of Computer Engineering,

Iran University of Science and Technology,

Tehran, Iran.

monazzah@iust.ac.ir

Invited Talk at Shahid Rajaei University (1399/12/06)

Amir Mahdi Hosseini Monazzah – IUST

Outline

- The emergence of memory
- Memory unit
 - Memory wall
 - Memory types2
 - Memory hierarchies
- Memory technologies
 - Volatile
 - Non-volatile
 - Comparison
- Conclusion

- 1800s
 - Charles Babbage constructs the first punched card machine with a memory store called the Analytical Engine (1833)

- 1930s
 - Gusta Tauschek builds drum memory (1932)
- Konrad Zuse patents a mechanical combination memory (1936)

• 1930s

 John Atanasoff and Clifford Berry build electronic 50-bit words digital memory (1939)

• 1940s

• Helmut Schreyer develops neon lamp memory (1941)

 The magnetic core memory with pulse transfer control was invented by Frederick Viehe, An Wang, and Kenneth Olsen independently (1947)

• 1940s

 Jay Wright Forrester invents the magnetic random-access coincident-current drum

 Maurice Vincent Wilkes builds the first practical storedprogram computer with vacuum tube memory (1949)

• 1950s

- Jay Forrester patents the matrix core memory (1951)
 - Ram was born!
- 1960s
 - Atlas virtual memory is invented (1962)

• 1960s

 Maurice Wilkes develops the idea of a cache computer memory (1965)

 Robert Dennard invents and patents his Dynamic Random Access Memory, DRAM (1968)
 June 4, 1968 ret.- Dennard ret. Dennard ret.- Dennard ret.- Dennard ret.- Dennard ret.- Start 3

• 1960s

• Intel creates a 1 Kb RAM chip (1969)

• And so on ...

Memories form computer architecture perspective

Memory

- An essential component in any general purpose computer since it is needed to store programs and data
- Main memory
 - Memory unit that communicates directly with the CPU
- Auxiliary memory
 - Devices that provide backup storage
 - Are used to store system programs, large data files and other backup information. Only programs and data currently needed by the processor reside in main memory

A performance challenge!

M. Bahi and C. Eisenbeis, "High Performance by Exploiting Information Locality through Reverse Computing," *2011 23rd International Symposium on Computer Architecture and High Performance Computing*, Vitoria, Brazil, 2011, pp. 25-32, doi: 10.1109/SBAC-PAD.2011.10.

Cache memory

- Memory that lies in between main memory and CPU
- Holds those parts of the program and data that are most heavily used
 - Increases the overall processing speed of the computer by providing frequently required data to the CPU at a faster speed

From the access type perspective

Sequential access memory

- A class of data storage device that read their data in sequence
- Are usually a form of magnetic memory
- Typically used for secondary storage in general-purpose computers due to their higher density, resistance to wear and non-volatility
- Example: hard disk, CD-ROMs, magnetic tapes, etc.

From the access type perspective

Random access memory

- Is a form of computer data storage
- Allows stored data to be accessed in any order
- Type: SRAM and DRAM

From the storage permanence perspective

• Volatile memories

- Require constant power to maintain the stored information
- Holds data temporary
 - Eg.
- Non-volatile memories
 - Can store information even when there is no constant power
 - Holds data permanently

An efficient and practical approach!

- To obtain the highest possible access speed while minimizing the total cost of the memory system
- Consists of all storage device in a computer system
 - Auxiliary
 - Cache
 - Main memory
 - High speed registers
 - And etc.

An efficient and practical approach!

Illustration: Ryan J. Leng

Static RAM Cell: SRAM

• Write

- Drive bit lines (bit=1, bit=0)
- Select row

Static RAM Cell: SRAM

- Read
 - Precharge bit and bit to Vdd or Vdd/2 => make sure equal!
 - Select row
 - Cell pulls one line low
 - Sense amp on column detects difference between bit and bit

Typical SRAM organization: 16-word x 4-bit

1-Transistor Memory Cell (DRAM)

- Drive bit line
- Select row
- Refresh
 - Just do a dummy read to every cell

• Read

- Precharge bit line to Vdd
- Select row
- Cell and bit line share charges
- Very small voltage changes on the bit line
- Sense (fancy sense amp)
 - Can detect changes of ~1 million electrons
- Write: restore the value

Classical DRAM organization (square)

Why non-volatile memories (NVMs)?

- Computer architecture perspective
 - Limitations of SRAM and DRAM
 - Power wall
 - Cost wall
 - Scaling wall
- Auxiliary storage perspective
 - Limitations of HDDs
 - Limitations of Flash-based SSDs

Emerging NVM technologies

- Ferroelectric RAM (FRAM)
- Magnetic RAM (MRAM)
- Phase Change Memory (PCM)
- Spin Torque Transfer RAM (STT-RAM)
- Resistive Random Access Memory (ReRAM/RRAM)

NVM technologies major parameters

- Cell size ⇒ Unit Cost
- Read power
- Write power (set power / reset power)
- Leakage current (static power)
- Scalability
- Read latency
- Write latency (set vs. reset write latency)
- Read voltage level (and read current)
- Write voltage level (and write current)

NVM technologies major parameters

- In-place update
 - If not, erase latency?
- Yield
- Maturity
- Soft FIT rate
 - For various fault models (SEU, temperature, read disturbance, program disturbs)
- Hard FIT rate
- Endurance
- Mask count & fabrication complexity
 NRE cost

NVM technologies major parameters

Data retention

- Less than 1ms ⇒ Volatile
- Greater than 1 year ⇒ Non-Volatile
- Between?
- Bits per cell (MLC-2, MLC-3, ...) ⇒ Unit Cost
- 3-D stacking capability
- Compatibility with CMOS technology
- NVM cell peripherals
 - For regular and non-regular structures
- Process variation

Spin Transfer Torque Magnetic RAM (STT-MRAM)

- Magnetic Tunnel Junction (MTJ)
- Relative magnetization direction
- Different resistances ⇒ Logic 0 or 1
- Write: spin-polarized current
 - Much less write current than conventional MRAM

Some of the well-known memory technologies

	SRAM	DRAM	Flash (NOR)	Flash (NAND)	FeRAM	MRAM	PRAM	RRAM	STT- MRAM
Non-volatile	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Cell Size [F ²]	50-120	6-10	10	5	15-34	16-40	6-12	6-10	6-20
Read Time [ns]	1-100	30	10	50	20-80	3-20	20-50	10-50	2-20
Write/Erase Time [ns]	1-100	15	1µs/1ms	1ms/0.1ms	50/50	3-20	50/120	10-50	2-20
Endurance	10 ¹⁶	10 ¹⁶	10 ⁵	10 ⁵	10 ¹²	>10 ¹⁵	10 ⁸	10 ⁸	>10 ¹⁵
Write Power	Low	Low	Very High	Very High	Low	High	Low	Low	Low
Other Power Consumption	Leakage	Refresh	None	None	None	None	None	None	None
High Voltage Required	No	3V	6-8V	16-20V	2-3V	3V	1.5-3V	1.5-3V	<1.5V
	Existing Products						Prototypes		

Conclusion and future research trend

- The trend of memory design and technologies were explored
- Memory hierarchy is reviewed
- Two traditional memory technologies were introduced
- The main metrics for comparison and evaluation of NVMs are introduced
- As a case study, we introduced the most promising NVM technology (STT-MRAM) which could be a substitute for SRAM

Conclusion and future research trend

- Many design challenges have been raised during the last decade that should be resolved
 - Performance
 - Power
 - Temperature
 - Capacity
 - SLC
 - MLC
 - •••

References

- David A. Patterson, "Memory system lectures", UC Berkeley, Berkeley, California, 2000.
- Hossein Asadi, "Storage systems lectures", Sharif University of Technology, Tehran, Iran, 2019.
- Sandesh Jonchhe et al., "Memory organization", St. Lawrence College, Kingston, Canada, 2017.
- Ping Zhou et al., "Energy Reduction for STT-RAM Using Early Write Termination", in ICCAD, 2019.

